About Radon

• Radon is a gas that occurs naturally in the ground and some rocks.
• Radon is colorless, odorless, and invisible. It is impossible to tell if you have inhaled it.
• Radon can enter buildings through cracks and openings in foundations.
• Radon occurs at low concentrations in outside air but can accumulate to higher levels in buildings, especially in basements or ground-floor spaces. Most people experience their greatest exposure to radon in their homes.
• Long-term exposure to radon is the leading cause of lung cancer among nonsmokers.
• The U.S. Environmental Protection Agency's (EPA) estimates that radon causes about 21,000 deaths per year and is the leading cause of lung cancer for nonsmokers.

It Is Always a Good Idea to Test for Radon.

• The EPA Radon Zone Map shows regions that have higher likelihoods of high radon levels. This map should not be used to decide whether to test a home, however.
• Radon affects living spaces at, below, or near ground level at higher rates. These spaces should be tested more often and with higher priority.

• Avoid testing during severe weather.

Radon Test Devices

There are many devices commercially available to test for radon. Use devices approved by the National Radon Proficiency Program (NRPP), National Radon Safety Board (NRSB), or a local authority.

Call the National Radon Hotline to obtain approved test kits.

⚠️ National Radon Hotline: 1 (800) 767-7236

Where and When to Conduct the Test

Radon tests should be conducted in rooms that are living spaces, such as bedrooms, living rooms, or studies.

Floor: Test on the lowest occupied floor.

Location in the room: Test within the general breathing area, on a table or a desk, at least three feet away from any windows or doors.

Building conditions: Test with the windows and doors closed with normal heating or cooling operations.

Do NOT test in:

• Closets.
• Kitchens.
• Bathrooms.
• Garages.
• Close proximity to vents or heat sources.

Figure 1. Where to Test in a Dwelling

Not less than…

3 feet

4 to 8 inches

20 inches
How to Conduct the Test

Conducting the test is easy—simply follow the directions provided in the kit. If you are uncomfortable conducting a radon test yourself, consider hiring a Qualified Radon Professional to conduct the test. According to the American Association of Radon Scientists and Technologists, the cost of a typical home radon inspection ranges from $100 to $275.

General Testing Procedures:
- If the test kit specifies that it is “passive,” place two kits near each other and take the average of the two readings. Passive devices give a time-weighted average reading.
- If the kit is “active,” only one test is necessary. Active devices provide and record readings every hour.
- For time-sensitive results, a short-term radon test can provide readings after 48 hours.
- Long-term radon tests of up to or greater than 90 days provide more accurate results and can be used to measure short-term or seasonal variations in radon levels.

Shared Building Testing

When testing units in a multifamily building, a measurement professional qualified by NRSB or NRPP should be present and supervising all testing activities. This professional must develop a quality assurance plan and a communication plan prior to testing activities.

Where to test in multifamily or shared buildings:
- All living units that have floor or wall contact with the ground, including non-dwelling spaces like lobbies. If no units have ground contact, test the lowest units in the building.
- At least 10 percent of all living spaces on the upper floors (second floor and above).

Reading the Test Results

If the test results are more than 4 pCi/L, speak with a Soil Gas Mitigation Professional or a Qualified Contractor to discuss the test results. A qualified professional is certified according to requirements from NRPP or NRSB.

The radon action level of 4 pCi/L (or higher) stands for 4 picocuries per liter. It is a measure of how many particles of radon are radioactively decaying in the air. The unit “picocuries” is named for Marie Curie, a pioneer in the study of radiation.

Mitigation

If test results are consistently high enough, mitigation may be necessary. Radon mitigation systems are low-cost construction additions that use air pressure to collect radon under the building and direct it away from living areas.

Figure 2. Testing Locations in Multifamily Housing