

# About Radon

- Radon is a gas that occurs naturally in the ground and some rocks.
- Radon is colorless, odorless, and invisible. It is impossible to tell if you have inhaled it.
- Radon can enter buildings through cracks and openings in foundations.
- Radon occurs at low concentrations in outside air but can accumulate to higher levels in buildings, especially in basements or ground-floor spaces. Most people experience their greatest exposure to radon in their homes.
- Long-term exposure to radon is the leading cause of lung cancer among nonsmokers.
- The Environmental Protection Agency (EPA) estimates that radon causes about 21,000 deaths per year.

# Mitigating Radon in Existing Buildings

- Radon mitigation systems in existing buildings are designed and installed as permanent, integral additions.
- A passive system may be converted to an active system by the addition of a fan.
- Systems must be designed and installed by a Radon Professional or a Qualified Contractor.
- Installation must follow any applicable state or local regulations.

A qualified professional is certified according to requirements from the National Radon Proficiency Program (NRPP) or the National Radon Safety Board (NRSB).

# **ASD Systems Installation**

Active Soil Depressurization (ASD) is the most common form of mitigation systems for radon and is relatively low cost. ASD systems use fan-driven air pressure to capture radon in the soil and direct it away from living spaces. ASD systems work well for most foundation types.

- 1. ASD suction points. The diagrams below illustrate examples of suction point system designs.
- 2. **ASD piping.** Pipes and fittings must be air- and watertight.
- 3. ASD exhaust discharge. Exhaust systems with standard 3- to 4-inch diameter pipes should aim directly up and away from the building.
  - Install the exhaust discharge at least 10 feet from building openings and occupied outdoor spaces.
- 4. **ASD fan.** The ASD fan is installed within the radon pipe close to the point of discharge. Fans should be sealed to prevent leakage and weather damage.

# Sealing

All accessible openings or cracks in the slab, foundation, or crawl space must be **sealed** to break the connection between soil and living spaces using appropriate sealant.

The most common materials for sealing are **concrete**, to seal openings and cracks in the foundation, and **soil gas retarder membrane**, which is applied on the soil. There are special sealants (caulks) that can be used around penetrations such as holes in the ground for passing pipes or wiring.



# Non-Habitable Air Space



#### Figure 1. ASD Suction Points



# Radon Mitigation for Existing Housing (continued)



Figure 3. ASD Exhaust Discharge & ASD Fan



### **Cost of Mitigation**

According to the American Association of Radon Scientists and Technologists (AARST), the average cost to install a mitigation system in a single-family residence is between \$1,500 and \$3,000. For multifamily buildings, the cost averages between \$2,500 and \$4,000 per unit. These estimates do not include long-term operation, maintenance, or monitoring.

#### **Complete Systems**

After installing the ASD system, take the following steps to make sure it operates correctly:

- Label systems Label all major components of the system.
- Evaluate and test Have an HVAC specialist evaluate the system.
- Operate and maintain The contractor or radon mitigation specialist in charge of installing the system must prepare a written, working operation and maintenance plan that property owners and managers can use and implement.

#### **Post-Mitigation**

Soon after the mitigation system is installed, it must undergo a post-mitigation inspection for compliance and efficacy, including a short-term radon test 24 hours after the system is turned on. Additional radon tests are recommended every 2 years following mitigation.

## **Considerations for Multifamily Housing**

Radon mitigation systems for multifamily buildings can be significantly more complex than single-unit dwellings. As such, a multifamily mitigation project MUST be managed by a qualified professional and may require licenses where state requirements are applicable.

# System Planning for Multifamily Mitigation Projects:

**Building Investigations** 

- 1. Conduct a **nondestructive investigation** to account for building features that may affect the work.
- 2. Conduct a **diagnostic investigation**, including pressure field extension tests.
- 3. Prepare design feasibility plans.



#### **Communication Planning:**

Prior to any work, the Qualified Contractor must prepare a written **communication plan** for the building owners and managers. This plan includes information such as proposed designs, costs, safety information, and building specs.

# **Collateral Mitigation**

Dwelling units located in buildings with a shared foundation and electrical meter can share some components of a radon mitigation system. However, each unit must be equipped with its own fan monitor.

#### More Information

This fact sheet contains information from the following two AARST/ANSI Standards of Practice:

- 1. SGM-SF 2017: Soil Gas Mitigation Standards for Existing Homes
  - Read the Standard here: <u>https://standards.aarst.org/</u> <u>SGM-SF-2017/index.html</u>
- 2. RMS-MF 2018: Radon Mitigation Standards for Multifamily Buildings
  - Read the Standard here: <u>https://standards.aarst.org/</u> <u>RMS-MF-2018/index.html</u>

Access all of the AARST/ANSI soil gas and radon Standards at <u>https://www.epa.gov/radon/radon-standards-practice</u>.



