Algorithm for Calculation of Site road/vehicle noise assessment, in accordance with 24 CFR Part 51. Sound source level for automobiles = \(AE = 64.6 + 20 \log_{10}[S] - 15 \log_{10}[D] \), Sound source level for medium sized trucks = \(AE = 74.6 + 20 \log_{10}[S] - 15 \log_{10}[D] \), Heavy trucks when \(S \leq 50 \text{ mph} \), \(AE = 114.5 - 15 \log_{10}[D] \), Heavy trucks when \(S > 50 \text{ mph} \), \(AE = 80.5 + 20 \log_{10}[S] - 15 \log_{10}[D] \). Day/Night Automobile Sound Level = \(\text{DNL} = AE + 10 \log_{10}[EADT*(d+10*n)] - 49.4 \), where \(d = \text{daytime fraction of ADT} \), \(n = \text{nighttime fraction of ADT} \); \(d = 1 - n \); \(\text{ADT} = \text{Average Daily Traffic} \), \(\text{EADT} = \text{Effective Average Daily Traffic} \). \(\text{EADT} \) for heavy trucks = \(\text{ADT} \)*(factor from table#8-HUD noise guidebook), \(\text{EADT} \) for medium sized trucks = \(\text{ADT} \)*DTS equation, \(\text{EADT} \) for cars = \(\text{ADT} \)*DTS equation, DTS equation=distance to stop sign equation= \(0.1 + 0.9*(DTS/600) \), DTS=distance from the proposed HUD site to stop sign; Gradient Adjustment Factor for DNL determination on heavy trucks (GAF) = \((\% \text{ Road Gradient})^{0.5} - 1\) – REVISED -1-14-08
Algorithm for Calculation of Day-Night locomotive sound levels, in accordance with 24 CFR Part 51B. Sound source level for electric engines and rail cars = \(AE = 71.4 + 20 \times \log_{10}[S] + 10 \times \log_{10}[N2] - 15 \times \log_{10}[Dl] \). \(N2 = ne + nc \), where \(ne \) = # of electric engines and \(nc \) = # of cars. Note: An electric engine is counted as a rail car. Adjusted Average Train Operations (Railroad) = \(AATOr = \) Average Train Operations (ATO) times 100. Adjusted Average Train Operations (Total) = \(AATO \) total = \(AATO \) (railroad) + \(ATO \) times 4. Day/Night Electric Engine and Rail Car Sound Level = \(DNL = AE + 10 \times \log_{10}[AATO_{\text{total}} \times (d + 10 \times N)] - 49.4 \), where \(d \) = daytime percent use of \(AATO \), \(N \) = night time percent use of \(AATO \), \(D = 100\% - N \) – \(RRDNL \) = Rail Road DNL.

Data Input:
- Identify
 - HUD site
- \(N2 = \) sum of electric engines and rail cars = \(ne + nc \)
- \(AE = \) sound source level for electric engines
- \(D = \) daytime % of ATO
- \(D = 100\% - N \)
- \(AATOr = \) ATO times 100
- \(AATO_{total} = AATO \) (railroad) + \(ATO \) times 4
- \(AATO_{railroad} = \) ATO times 100
- \(AATO_{total} = \) AATO (railroad) + \(ATO \) times 4

Yes
- Calculate:
 - \(N2 = \) sum of electric engines and rail cars = \(ne + nc \)
 - \(AE = \) sound source level for electric engines
 - \(D = \) daytime % of ATO
 - \(D = 100\% - N \)

No
- Calculate:
 - \(RRDNL \) = Rail Road DNL
- Calculate:
 - Site DNL
- Calculate:
 - Total Train DNL = DNL from electric engines and rail cars
- Calculate:
 - Total Train DNL = DNL from electric engines and rail cars

DATA INPUT:
1) Railroad Track Identifier
 - Route name or destination
2) \(ne \) = # of electric engines
 - (default = 1)
3) \(nc \) = # of cars per train
 - (default = 8)
4) \(S \) = average train speed
 - (default = 30 MPH)
5) \(DL \) = distance from proposed HUD project site to center of tracks
6) \(ATO \) - average train operations
7) \(N \) = nighttime % of ATO
 - (default = 0.15 or 15%)
8) Railway horns (Y or N)
9) Bolted track (Y or N)

REVISIONS:
- 12-17-08
Algorithm for Calculation of Day-Night locomotive sound levels, in accordance with 24 CFR Part 51B. Sound source level for diesel engines = \(AE = 141.7 - 10 \times \log_{10} [S] + 10 \times \log_{10} [N1] - 15 \times \log_{10} [Dl] \). Sound source level for rail cars = \(AE = 71.4 + 20 \times \log_{10} [S] + 10 \times \log_{10} [N2] - 15 \times \log_{10} [Dl] \). Adjusted Average Train Operations (Engines) = \(\text{AATOe} = \text{Average Train Operations (ATO)} \times 10 \). Adjusted Average Train Operations (Rail cars) = \(\text{AATOC} = \text{Average Train Operations (ATO)} \times 4 \). Day/Night Diesel Engine (DNLe) or Rail Car (DNLc) Sound Level = \(AE + 10 \times \log_{10} [\text{AATO(car or engine)} \times (D + 10 \times N)] - 49.4 \), where \(D \) = daytime percent use of AATO, \(N \) = night time percent use of AATO, \(D=100\%-N \) – RRDNL = Rail Road DNL REVISITED – 12-17-08